CSA Global Training Course

Introduction to Machine Learning
2 days


Machine learning is a collection of computer algorithms that iteratively learn from data how to solve problems with minimal human intervention. This technique has been used successfully to predict exploration targets, classify rocks, and generate automatic 3D geological interpretations, among other applications. Its popularity in the mining industry is growing at an accelerated rate and will become an essential tool in the near future. We will demonstrate the basics of machine learning techniques and workflows, including when to use it, how to prepare data, and how to recognize that datasets have limitations to solve certain machine learning problems. This course will also explore how to select features in the dataset, including how to validate, test and interpret results.

Learning Outcomes

Upon completion of this course, you will be able to:

  • Understand what machine learning is and what is it used for.
  • Identify different types of software to conduct machine learning.
  • Recognise general concepts and workflows.
  • Learn how to select meaningful features from a database.
  • Become familiar with data preparation and data issues.
  • Acquire skills to train, validate and test machine learning algorithms.
  • Understand large groups of machine learning techniques for classification and regression.
  • Possess the tools and skills to conduct machine learning with their own set data.

Presenter Information

Our facilitator is an experienced practitioner with a robust mix of academic and practical expertise.

Presenter, Adrian Martiez

 P.Geo, Ph.D. in Geological Sciences, ISMM Moa. Specialist in Geostatistics (CFSG), Paris Mining School. B.Eng. Geology, ISMM Moa

Adrian is both a geologist and a geostatistician. He produces open source software for geostatistics and mineral resources in Python, Fortran, Cython, C and SQL. He has worked as a consultant since 2002 covering many commodities including gold, copper, nickel, chromium, and raw material for cement industry. Adrian has considerable experience using multiple indicator kriging for resource estimation of gold deposits with high nugget and domaining issues; with non-linear geostatistics and with conditional simulations for resource estimation and model validation. Adrian has previously worked as an Assistant Professor in Cuba and Ethiopia, teaching geology and geostatistics.

Who is this course for?

This two-day training course is designed for geologists, geophysicists or professionals working in the mining industry. Be introduced to the practice and theory of machine learning.

This course is available in a classroom as well as on-site.

Training Outline: Introduction to machine learning

More information

Please contact Magda Fimmano, Marketing Communications Manager on:
+61 89355 1677 or by email.

Download the course brochure

Connect with our Teams