Dealing with Nickel-Cobalt Laterite Deposit Complexity

MICK ELIAS
CSA GLOBAL Pty Ltd
OUTLINE

• Processes of laterite development
• Factors controlling the nature of the laterite profile
• Laterite profile classification
• Coping with Complexity
 • Mineral Resource Estimation
 • Mining and Processing
• Conclusions
NICKEL LATERITES

• Regolith, derived from ultramafic rocks, that contains commercially exploitable reserves of nickel (and, commonly, cobalt)

• Formed by weathering, erosion, transport and/or deposition of older material (either the immediate bedrock or material from somewhere else)
• Includes fractured and weathered bedrock, saprolites, soils, alluvium, colluvium
Chemical Weathering

<table>
<thead>
<tr>
<th>General processes of chemical weathering</th>
<th>Effects in ultramafic rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaching of mobile constituents: alkalis, alkaline earths</td>
<td>Breakdown of olivine, pyroxene, serpentine and leaching of Mg, Ni, Mn, Co</td>
</tr>
<tr>
<td>Formation of stable secondary minerals: Fe and Al oxides, clays</td>
<td>Goethite formation, smectite formation, adsorption of Ni from solution</td>
</tr>
<tr>
<td>Partial leaching of less mobile components: silica, alumina, Ti</td>
<td>Leaching of silica in rainforest and moist savanna climates</td>
</tr>
<tr>
<td>Mobilisation and partial reprecipitation of redox-controlled constituents: Fe, Mn</td>
<td>Precipitation of Mn oxides and adsorption of Ni and Co from solution</td>
</tr>
<tr>
<td>Retention and residual concentration of resistant minerals: zircon, chromite, quartz</td>
<td>Residual chromite concentration</td>
</tr>
</tbody>
</table>
TROPICAL LATERITE PROFILE

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>MgO</th>
<th>Ni</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferricrete</td>
<td>>50%</td>
<td><0.5%</td>
<td><0.6%</td>
<td><0.1%</td>
</tr>
<tr>
<td>"Limonite"</td>
<td>40-50%</td>
<td>0.5-5%</td>
<td>0.8-1.5%</td>
<td>0.1-0.2%</td>
</tr>
<tr>
<td>Saprolite</td>
<td>10-25%</td>
<td>15-35%</td>
<td>1.5-3%</td>
<td>0.02-0.1%</td>
</tr>
<tr>
<td>Saprock</td>
<td>5%</td>
<td>35-45%</td>
<td>0.3%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE OF LATERITE PROFILE

Red Laterite

Limonite zone

Saprolite zone

Bedrock pinnacle

Courtesy of PT Inco
Factors controlling the nature of the laterite profile

- Parent rock type
- Climate
- Tectonics/Topography/Drainage
- Structure
CLIMATIC CONTROL
TECTONICS, TOPOGRAPHY and DRAINAGE

New Caledonia

Western Australian craton
VARIATION IN NICKEL LATERITE WITH TOPOGRAPHY – PERIDOTITE

<table>
<thead>
<tr>
<th>Oxide</th>
<th>Hydrous Mg-Ni silicates</th>
<th>Smectite</th>
</tr>
</thead>
</table>

1. Regional water table
2. Free draining
3. Impeded drainage

- Transported overburden
- Lateritic duricrust
- Fe-saprolite (limonite)
- Clay-saprolite
- Saprolite
- Protolith
- Garnierite veins
- Corestones

after Brand 1997
INFLUENCE OF WATER TABLE LEVEL

(a) LIMONITIC NICKEL
(b) FRESH ROCK
(c) NICKEL SILICATE
(d) NICKEL IN SOLUTION
(e) GROUND WATER TABLE
STRUCTURAL CONTROL
LATERITE PROFILE CLASSIFICATION

• Oxide laterites
 • Fe hydroxides and oxides in the upper part of the profile, overlying bedrock

• Clay silicate laterites
 • smectitic clays in the upper part of the profile

• Silicate laterites
 • hydrated Mg-Ni silicates (serpentine, garnierite) occurring deeper in the profile
OXIDE LATERITE

Pinares de Mayari, Cuba
CLAY LATERITE

Bulong, Western Australia
SILICATE PROFILE

Thio, New Caledonia
COPING WITH COMPLEXITY

- Mineral Resource Estimation
- Mining and Processing
Mineral Resources – Interpreting lithological boundaries

Courtesy of PT Inco
Mineral Resource estimation – Drilling Density
GPR survey coverage

Courtesy PT Ceria Nugraha Indotama
GPR Cross Section Interpretation

Courtesy PT Ceria Nugraha Indotama
GPR Interpretation – Depth to Bedrock

Courtesy PT Ceria Nugraha Indotama
GPR Interpretation – Thickness of Saprolite

Courtesy PT Ceria Nugraha Indotama
COPING WITH COMPLEXITY

- Mineral Resource Estimation
- Mining and Processing
Processing Methods for Ni Laterites

<table>
<thead>
<tr>
<th>Schematic Laterite Profile</th>
<th>Common Name</th>
<th>Extraction Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saprolite/Garnierite/Serpentine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow Limonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red Limonite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acid Leach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NPI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caron Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smelting</td>
</tr>
</tbody>
</table>
Ore Control Requirements

<table>
<thead>
<tr>
<th>HPAL</th>
<th>SMELTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni content</td>
<td>Ni content</td>
</tr>
<tr>
<td>Co content</td>
<td>SiO2 : MgO ratio</td>
</tr>
<tr>
<td>MgO content</td>
<td>FeO content of slag</td>
</tr>
<tr>
<td>Al2O3 content</td>
<td></td>
</tr>
</tbody>
</table>
FeNi Smelting Conditions

![Graph showing FeNi smelting conditions with various slag tapping/liquidus temperatures and slag SiO2/MgO ratios.](image-url)

Courtesy M L Steemson
Goro Profile (HPAL)

- Cuirasse
- Fe pisolites
- Red limonite
- Yellow limonite
- Rocky saprolite
- Peridotite

Graphs showing depth (m) vs. Ni%, Co%, Fe%, SiO2%, MgO%.
Goro Test Mine
Ravensthorpe Profile (HPAL/AL)
Thank you